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Abstract: The ability of pulsed nature of synchrotron radiation opens up the possibility of17

studying microsecond dynamics in complex materials via speckle-based techniques. Here, we18

present the study of measuring the dynamics of a colloidal system by combining single and19

multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at20

various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The21

obtained sample dynamics from all correlation techniques at different pulse patterns are in very22

good agreement with the expected dynamics of Brownian motions of silica nanoparticles in23

water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron24

X-ray sources using individual X-ray pulse patterns.25

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement26

1. Introduction27

Speckle-based techniques are well established to investigate sample dynamics in soft matter.28

The high coherence beam leaves an imprint of the spatial distribution of the subjected system29

on a diffraction image as a grainy interference pattern at the detector plane, which is typically30

called “speckle”. The movement of disordered particles shifts the relative phases of the scattered31

field and induces temporal variations in the speckle patterns. Consequently, these fluctuating32

speckle intensities reflect the information of the system dynamics, which can be quantified by33

a correlation function. For many decades, optical laser systems have been widely employed34

to generate speckle patterns for photon correlation spectroscopy (PCS) [1–3]. Thanks to the35

improvement of the coherent X-ray flux from synchrotron sources, X-rays have been employed for36

speckle-based measurements of dynamics on the atomic scale [4] or optically turbid system [5].37

One of the most robust techniques, called X-ray photon correlation spectroscopy (XPCS), is a38

powerful and convenient tool for measuring dynamics. The temporal resolution of the technique39

is defined by the number of images taken in time. In the past decades, considerably slow systems40

have been in the focus of XPCS studies [6–14]. Recently, new advanced detector technology has41

begun to offer 2D detectors with the microsecond temporal resolutions in XPCS measurements42

(e.g., VIPIC [15], UFXC32k [16], Tristan detector [17], and the XSPA-500k [18]). Recently43

developed X-ray detectors offering MHz frame rates, such as adaptive gain integrated pixel44

detector (AGIPD), enable to investigate of nanosecond colloidal dynamics at 3rd generation X-ray45
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synchrotron sources [19] and X-ray free electron laser (XFEL) sources [20, 21]. In order to46

measure sample dynamics faster than accessible with XPCS, X-ray speckle visibility spectroscopy47

(XSVS) has been developed, which evaluates a speckle contrast as a function of illumination48

time. The longer illumination time compared to system dynamics leads the more blurred speckle49

images and a loss in contrast of the speckle images. This concept was introduced in optical laser50

systems [22] and extended to X-ray regime [23–27].51

An alternative speckle technique is double pulse XPCS (DP-XPCS). The technique evaluates a52

speckle contrast of two summed speckle patterns separated with a delay time, which corresponds53

to the temporal resolution. DP-XPCS has been demonstrated with sequentially obtained speckle54

patterns [28] and an optical pulse laser scheme [29]. More recently, DP-XPCS has been employed55

in a special operation mode of linear accelerators of XFEL [30, 31] or X-ray split-and-delay56

unit [32–42] to investigate nanosecond dynamics beyond detector frame rate limitations.57

Fig. 1. (a) Schematics of the speckle measurement experiment employing the intrinsic
pulse structure of PETRA III. Coherent X-ray pulses are delivered at the sample position
with 192 ns temporal separation. SPARTA collects 352 images in a single measurement,
and the delay time between each frame is set by the number of X-ray pulses between
two consecutive frames 𝑁 . (b) Speckle images of XSVS and DP-XPCS for 𝑁40 with
varying number of frames 𝑛.

𝑁 Δ𝑡

1 (𝑁1, Single pulse mode) 192 ns - 67.6 𝜇s

5 (𝑁5, 5 pulse mode) 960 ns - 338 𝜇s

40 (𝑁40, Revolution mode) 7.68 𝜇s - 2.7 ms

Table 1. Data collection modes of SPARTA. 𝑁 and Δ𝑡 denote the number of X-ray
pulses between two successive frames and the time range of correlation functions,
respectively.

In this paper, we demonstrated XPCS measurements using single and multiple X-ray pulses58



from nanoseconds to milliseconds time scales. Thanks to the MHz frame rate of the detector, we59

investigated the sample dynamics with 192 ns temporal resolution in a single pulse mode. In60

addition, we covered the gap between nanoseconds to milliseconds using the multiple X-ray pulse61

modes in the correlation function. The obtained sample dynamics are in excellent agreement62

with the expected dynamics of the system.63

2. Materials and Methods64

2.1. Experiments65

The experiment was conducted at the coherent application beamline P10 of PETRA III [43].66

The monochromatic 8 keV X-ray beam was focused vertically and horizontally down to 𝑑𝑏 =67

2.5 𝜇m at the sample position. The speckle size 𝑑𝑠 = 310 𝜇m was estimated at the detector68

plane located at a distance 𝐿 = 5 m, according to 𝑑𝑠 = 𝜆𝐿/𝑑𝑏, where 𝜆 is the X-ray wavelength.69

The silica colloidal nanoparticles (NPs) with a core radius 𝑅 of 65 nm were dispersed in water70

and filled in a 700 𝜇m thick quartz capillary. The SPARTA detector, which was developed by71

the X-Spectrum GmbH with AGIPD technology [44–46] was employed to measure the sample72

dynamics. The detector is composed of 128 × 512 pixels with a pixel size of 200 𝜇m × 200 𝜇m.73

It can collect up to 352 memory cells (i.e., frames) at a frame rate in the MHz range in a single74

burst (i.e., measurement). The images have to be read out until the next MHz acquisition burst75

can be triggered 0.1 s later. Note that the number of X-ray pulses (𝑁) between two consecutive76

frames adjusts the time resolution and the achievable time window in correlation functions. In77

this work, we selected 𝑁 = 1, 5, and 40 to capture the sample dynamics (see supplement Fig. S178

and Tab. 1). The detector signal was carefully extracted using a background subtraction method79

that is elaborated elsewhere [19,21] and subsequent conversion of the cleaned signal to an integer80

number of photons. An additional pixel mask was applied in the analysis to exclude detector81

pixels with high electronic noise. The depicted speckle patterns after the data conversion process82

to photons are shown in Fig. 1(b).83

2.2. X-ray photon correlation spectroscopy84

Three complementary XPCS techniques (i.e., XPCS, XSVS, and DP-XPCS) were employed to85

evaluate the sample dynamics obtained from different collection modes.86

2.2.1. XPCS87

The intensity fluctuations in time are caused by the spatial rearrangement of colloidal particles.88

The sample dynamic properties are traced by the intensity autocorrelation function together with89

the Siegert relation [47, 48]90

𝑔 (2) (𝑄,Δ𝑡) = ⟨𝐼 (𝑄, 𝑡)𝐼 (𝑄, 𝑡 + Δ𝑡)⟩
⟨𝐼 (𝑄, 𝑡)⟩2

= 1 + 𝛽0 | 𝑓 (𝑄,Δ𝑡) |2, (1)

where 𝐼 (𝑄, 𝑡) denotes the intensity of the speckle pattern at wavevector 𝑄 and time 𝑡. The bracket91

⟨⟩ stands for time averaging, and Δ𝑡 represents a delay time. The wavevector 𝑄 is defined by92

𝜆 and scattering angle 2𝜃 according to 𝑄 = 4𝜋 sin(𝜃)/𝜆. The 𝛽0 is the speckle contrast mostly93

defined by the degree of coherence of the beam and experimental configuration [49, 50]. For94

the simple monodisperse colloidal case, the intermediate scattering function (ISF: 𝑓 (𝑄,Δ𝑡)) is95

considered via a simple exponential decay function96

𝑓 (𝑄,Δ𝑡) = exp(−Γ(𝑄)Δ𝑡), (2)



where Γ(𝑄) = 𝐷0𝑄
2 for typical Brownian motion and 𝐷0 is defined by the Stokes-Einstein97

relation as 𝐷0 =
𝑘𝑏𝑇

6𝜋𝜂𝑅 , where 𝑘𝑏, 𝑇 , 𝜂 are the Boltzmann constant, environment temperature98

and medium viscosity, respectively. Note that in the limit of Δ𝑡 → 0, the 𝑔 (2) − 1 corresponds to99

the 𝛽0 (Δ𝑡 = 0) and decreases as a function of Δ𝑡 taking into account the sample dynamics that100

can be expressed as101

𝛽0 exp(−2ΓΔ𝑡) = 𝑔 (2) (𝑄,Δ𝑡) − 1. (3)

The obtained correlation function provides the contrast 𝛽𝐶 (𝑄,Δ𝑡) = 𝛽0 exp(−2Γ(𝑄)Δ𝑡) that102

starts with 𝛽0 and decreases as a function of Δ𝑡 due to the sample dynamics.103

Fig. 2. (a) 2D speckle pattern taken by SPARTA for 𝑁1, 𝑁5, and 𝑁40. (b) Corresponding
azimuthally integrated intensity profiles as a function of 𝑄. The black dotted line
represents the formfactor fit, taking into account the sample polydispersity (Δ𝑅/𝑅).

2.2.2. X-ray speckle visibility spectroscopy104

In order to investigate system dynamics using XSVS from sequentially obtained speckle105

patterns, a speckle image with an exposure time 𝑡𝑒 is defined as 𝐼𝑉 (𝑄, 𝑡𝑒) =
∫ 𝑡+𝑡𝑒
𝑡

𝐼 (𝑄, 𝑡′)𝑑𝑡′ =106 ∑𝑛+𝑛𝑒
𝑛 𝐼 (𝑄, 𝑛), where 𝑡𝑒 = 190 ns × 𝑛𝑒𝑁 , and 𝑛𝑒 is the number of frames corresponding to 𝑡𝑒.107

The extending of 𝑡𝑒 does not affect the speckle contrast until the sample characteristic time Γ−1
108

is sufficiently smaller than 𝑡𝑒. In contrast, when 𝑡𝑒 > Γ−1, the speckle image is washed out, and109

consequently, the contrast decreases. In Fig. 1 (b), the degrading of speckle image clarity as a110

function of 𝑛 is clearly observed, and the normalized variance 𝛽 ≡ 𝑀−1 = 𝜎2 (𝐼𝑉 )/⟨𝐼𝑉 ⟩2, where111

𝑀 is a number of speckle mode in the intensity is given by [22, 51, 52]112

𝛽𝑉 (𝑄,Δ𝑡) = 2𝛽0
𝑡𝑒

∫ 𝑡𝑒

0
(1 − 𝑡/𝑡𝑒) | 𝑓 (𝑄,Δ𝑡) |2𝑑𝑡. (4)

In case of the simple exponential decay function 𝑓 (𝑄,Δ𝑡) = exp(−ΓΔ𝑡), Eq. 4 can be solved113

analytically as114

𝛽𝑉 (𝑄,Δ𝑡) = 𝛽0

2Γ2𝑡2𝑒
[2Γ𝑡𝑒 − 1 + exp(−2Γ𝑡𝑒)] . (5)

Note that the Eq. 5 shows more moderate decay in contrast compared to the 𝛽𝐶 .115



2.2.3. Double pulse XPCS116

Double pulse speckle contrast 𝛽 from the sum of two speckle patterns 𝑆(𝑄,Δ𝑡) = 𝐼 (𝑄, 𝑡) +117

𝐼 (𝑄, 𝑡 + Δ𝑡) enables to quantify the level of displacements of colloidal particles within the delay118

time Δ𝑡. The contrast is given by the normalized variance of intensity distribution at a wavevector119

𝑄 evaluated as [28]120

𝑐2 (𝑄,Δ𝑡) = ⟨𝑆2 (𝑄,Δ𝑡)⟩ − ⟨𝑆(𝑄,Δ𝑡)⟩2

⟨𝑆(𝑄,Δ𝑡)⟩2

=
𝛽0
2
(1 + | 𝑓 (𝑄,Δ𝑡) |2) + 𝛼, (6)

where 𝛼 is the shot noise.121

For weak speckle patterns, the photon counting statistics should be accounted for. The122

probability distribution of the number of photons per pixel 𝑘 in a speckle pattern is described by123

the negative binomial distribution function [53]124

𝑃𝑁𝐵 (𝑘) =
Γ(𝑘 + 𝑀)

Γ(𝑀)Γ(𝑘 + 1)

(
1 + 𝑀

⟨𝑘⟩

)−𝑘 (
1 + ⟨𝑘⟩

𝑀

)−𝑀
. (7)

In the negative binomial distribution, the normalized variance can be expressed as 𝑀−1 =125

𝜎2 (𝑘)/⟨𝑘⟩2 − 1/⟨𝑘⟩ [4].126

Fig. 3. Intensity correlation functions as a function of delay time obtained from 𝑁1
(green-square), 𝑁5 (orange-triangle), and 𝑁40 (blue-circle) for 𝑄 = 0.02 nm−1 (a) and
0.028 nm−1 (b). The dashed lines indicate the expected correlation functions using
Eq. 3.



3. Result and discussion127

Figure. 2 (a) shows the averaged intensity collected at the 𝑁1, 𝑁5, and 𝑁40, respectively. A total128

of 4700 bursts were employed to obtain a sufficient signal-to-noise ratio for 𝑁1 and 𝑁5, and 470129

bursts were used for 𝑁40. The azimuthally integrated intensity profiles are shown in Fig. 2 (b).130

The intensity profiles fall off as a function of 𝑄. The particle formfactor ring is well pronounced131

at 𝑄 = 0.09 nm−1 for 𝑁40, indicating a system of sufficiently dilute and non-interacting silica132

particles. A single-sphere formfactor fit to the intensity profile obtained with 𝑁40 yields 𝑅 =133

65.2±0.3 nm and size polydispersity Δ𝑅/𝑅 = 7.41 %.134

We divided the detector plane into regions of interest (ROI) that are limited by contours of135

equivalent wavevector 𝑄 for further analysis.136

Figure 3 shows 𝑔 (2) obtained from 𝑁1, 𝑁5, and 𝑁40 using Eq. 1. The dashed lines represent137

expected dynamics according to Eq. 3 where the initial contrast at Δ𝑡 → 0 is 𝛽0 = 0.2. A138

considerably larger error in 𝑁1 is due to the lower photon count rates. Nevertheless, resolving a139

single X-ray pulse in XPCS offers a 192 ns temporal resolution in this pulse pattern [19].140

Fig. 4. The obtained intermediate scattering functions from XPCS (circle) and DP-
XPCS (square) for varying 𝑄. The black dashed lines represent the expected curves of
a single exponential decay curve from Eq. 2.

Figure 4 shows a square of ISF obtained from XPCS (𝑔 (2) : filled markers) and DP-XPCS141

(𝑐 (2) : empty markers) in 𝑁40 for various 𝑄 values. The ISF from 𝑔 (2) extracted from Eq. 1142

decays as a function of delay time representing the motion of silica particles. The obtained initial143

contrast 𝛽0 from 𝑔 (2) was employed to Eq. 6 to extract ISF and 𝛼 from 𝑐 (2) . The black dashed144

lines represent dynamics of Brownian motion in freely diffusing silica particles in water with the145

relaxation rate Γ of 1315, 2578, and 4262 𝑠−1 at 𝑄 = 0.02, 0.028, and 0.037 nm−1, respectively.146

We calculated speckle contrast as a function of exposure time to obtain the X-ray speckle147

visibility using the normalized variance. In contrast to the XPCS and DP-XPCS, the image148

𝐼𝑉 (𝑄, 𝑡𝑒) for XSVS is a result of the summation of all the memory cells between the corresponding149

delay time. Figure 5 shows speckle visibility contrast as red squares for 𝑄 = 0.02 (a), 0.028 (b),150

and 0.037 (c), respectively. Also, XPCS results are shown as blue circles at corresponding 𝑄 in151

𝑁40. The dotted and dashed lines for the XPCS and XSVS experiment are the fit using Eq. 3 and152

Eq. 5, respectively. The extracted Γ as a function of wavevector transfer is in excellent agreement153

for all three approaches. This result shows that all the methods are well suited for pulsed-based154

studies.155

Dynamics measured via pulsed-based XPCS in a model colloidal model system of silica156



Fig. 5. Combined XPCS 𝑔 (2) -1 and speckle visibility contrast 𝛽𝑉 at the wavevector
transfer 𝑄 of (a) 0.02 nm−1, (b) 0.028 nm−1, (c) 0.037 nm−1. The dashed and dotted
lines are the fit result using Eq. 3 and Eq. 5, respectively.

Fig. 6. Extracted Γ as a function of 𝑄. The lines are the fitting results using
Γ(𝑄) = 𝐷0𝑄

2.

particles in water mark an important step in adopting various pulse patterns of storage rings in157

XPCS measurements. A higher coherent flux available with diffraction-limited storage rings158

(DLSR) will extend the access to study weakly scattering, but very relevant systems [54]. The159

possibility of employing a time structure of DLSRs paves the way to studying dynamics on160

nanosecond to microsecond timescales bridging the experimental gap between 3rd generation161

synchrotron sources and XFEL sources in investigating more complex systems, in particular, fast162

relaxation processes in glasses [11], atomic diffusion in metal alloys [55], soft matter [20] and163

biological systems [56].164



4. Conclusions165

We have demonstrated pulsed XPCS at a synchrotron source by employing various pulse patterns166

of PETRA III. The diffusion coefficients obtained from the three speckle correlation techniques,167

i.e., XPCS, XSVS, and DP-XPCS, show very good agreement with the expected dynamics168

of the colloidal system. The SPARTA detector capability of MHz frame rates has provided169

a way of conducting such experiments with very short time resolutions, spanning the range170

from 190 ns over microseconds to milliseconds to cover a fast but also wide range of times171

in correlation functions. These studies will provide great potential for X-ray speckle-based172

investigation for all synchrotron facilities operated by individual X-ray repetition rates and, in173

particular, diffraction-limited storage rings.174
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